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docannabinoid system mainly consists of endogenously produced cannabinoids
(endocannabinoids) and two G protein-coupled receptors (GPCRs), cannabinoid
receptors 1 and 2 (CB, and CB»). This system also includes enzymes responsible
for the synthesis and degradation of endocannabinoids and molecules required for
the uptake and transport of endocannabinoids. In addition, endocannabinoid-related
lipid mediators and other putative endocannabinoid receptors, such as transient
receptor potential channels and other GPCRs, have been identified. Accumulating
evidence indicates that the endocannabinoid system is a key modulator of gastro-
intestinal physiology. influencing satiety, emesis, immune function, mucosal integ-
rity, motility, secretion, and visceral sensation. In light of therapeutic benefits of
herbal and synthetic cannabinoids, the vast potential of the endocannabinoid system
for the treatment of gastrointestinal diseases has been demonstrated. This review
focuses on the role of the endocannabinoid system in gut homeostasis and in the
pathogenesis of intestinal disorders associated with intestinal motility, inflamma-
tion, and cancer. Finally, links between gut microorganisms and the endocannabi-

noid system are briefly discussed.

endocannabinoid; cannabinoid receptor; intestine; inflammation; cancer

THE PLANT CANNABIS HAS BEEN used for millennia to treat a wide
range of human illnesses as evidenced by medicinal reports
issued in China and India. The main active compound of
Cannabis sativa, A°-tetrahydrocannabinol (A°-THC), was
identified and characterized in 1964 (84). Subsequently, more
than 80 phytocannabinoids were identified and various active
analogs with different potencies were synthesized (56). Spe-
cific membrane-bound endogenous cannabinoid receptors were
discovered about 20 years later after the identification of
A°-THC; the first receptor was found in 1988 and the second
receptor in 1993 (30, 90). These discoveries led to rapid
advancements in the understanding of the endocannabinoid sys-
tem and in the developments of new therapies for many human
diseases (56). In particular, it has become evident that the endo-
cannabinoid system plays an important role in gastrointestinal
pathophysiology and that cannabinoid-based drugs may be of
therapeutic value in this context. In this review, we define the
endocannabinoid system and discuss novel findings demonstrat-
ing that this system influences a variety of intestinal disorders and
also acts as a liaison between the gut microbiota and the host.

The Endocannabinoid System

Endocannabinoids. Endogenous agonists of cannabinoid re-
ceptors are called “endocannabinoids” and are produced in
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humans and animals. An extended list of endocannabinoids
includes N-arachidonoylethanolamine (anandamide, AEA),
2-arachidonoylglycerol (2-AG), 2-arachidonyl glyceryl ether
(noladin ether), N-arachidonoyl dopamine (NADA), and
O-arachidonoyl-ethanolamine (virodhamine) (31). The most
widely studied endocannabinoids are AEA and 2-AG. AEA
was the first endocannabinoid identified in porcine brain and is
a member of the N-acylethanolamine (NAE) family (30),
whereas 2-AG is a monoacylglycerol and was first isolated
from rat brain and canine gut (82, 127). Noladin ether was first
synthesized as an analog of 2-AG but later isolated from
porcine brain (51, 83). In addition, endocannabinoid analogs
that structurally resemble prototypic endocannabinoids either
enhance the effects of endocannabinoids or exert their own
activities (17). Those analogs include other NAEs, such as
N-linoleylethanolamine (LEA), N-oleoylethanolamine (OEA),
N-palmitoylethanolamine (PEA), and N-stearoylethanolamine
(SEA), and AG family lipids, such as palmitoylglycerol (2-PG)
and oleoylglycerol (2-OG). Research on the endocannabinoid
system remains active and other endocannabinoid-related lipid
mediators are continuously identified, and these studies raise a
wide spectrum of questions about the diverse physiological and
pathological roles of endocannabinoids.

Synthesis and degradation pathways of endocannabinoids.
Endocannabinoids are synthesized on demand from membrane
lipid precursors, unlike other classical peptide transmitters,
which in general are stored in vesicles and released in response
to various stimuli (41, 101). Calcium influx into postsynaptic
cells initiates the biosynthesis of endocannabinoids (45) (Fig.
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1). For AEA, biosynthesis begins with the activation of N-
acyltransferase (NAT), which converts the membrane lipid
phosphatidylethanolamine (PE) to N-acylphosphatidylethano-
lamine (NAPE). Sequentially, NAPE-phospholipase
D (NAPE-PLD) catalyzes NAPE and produces AEA (34, 87).
Moreover, AEA can be synthesized through alternative path-
ways involving the hydrolysis of NAPEs by «-B-hydrolase
domain-containing protein 4 (ABHD4), glycerophosphodiester
phosphodiesterase 1, phospholipase C (PLC), or tyrosine-
protein phosphatase nonreceptor type 22 (132). The biosynthe-
sis of 2-AG begins with the PLC-mediated hydrolysis of the
membrane lipid, phosphatidylinositol (PI) to produce diacyl-
glycerol (DAG), which is subsequently converted to 2-AG by
diacylglycerol lipases (DAGL) a and [ (33). After being
released into the extracellular space. endocannabinoids bind to
cannabinoid receptors and exert their biological activities.
Conversely, to terminate their effects, endocannabinoids are
removed from the extracellular space by membrane transport-
ers and degraded by catalytic enzymes (45). AEA is degraded
into arachidonic acid (AA) and ethanolamine by fatty acid
amide hydrolase (FAAH) and N-acylethanolamine-hydrolyz-
ing acid amidase (NAAA)-mediated hydrolysis (87). 2-AG is
catabolized into AA and glycerol by different enzymes, such as
monoacylglycerol lipase (MAGL), ABHD6, or ABHDI12 (12,
75). Moreover, alternative endocannabinoid degradation path-
ways, such as the oxidation of AEA and 2-AG by cyclooxy-
genase, specific lipoxygenases, or even cytochrome P-450,
have been identified (133).

Fig. 1. Biosynthesis and hydrolysis of endo-
cannabinoids. For the biosynthesis of N-
arachidonoylethanolamine (AEA), phos-
phatidylethanolamine (PE) is converted to
N-acylphosphatidylethanolamine (NAPE)
by N-acyltransferase (NAT), and sequen-
tially, NAPE-phospholipase D (NAPE-PLD)
catalyzes NAPE and produces AEA. The
biosynthesis of 2-arachidonoylglycerol (2-
AG) begins with the phospholipase C
(PLC)-mediated hydrolysis of the membrane
lipid phosphatidylinositol (PI) to produce
diacylglycerol (DAG), which is subse-
quently converted to 2-AG by diacylglycerol
lipases (DAGL) « and . After binding to
cannabinoid receptors and exerting their bi-
ological activities, endocannabinoids are de-
graded by catalylic enzymes. AEA is de-
graded into arachidonic acid (AA) and eth-
anolamine by fatty acid amide hydrolase
(FAAH) and N-acylethanolamine-hydrolyz-
ing acid amidase (NAAA)-mediated hydro-
lysis. 2-AG is calabolized into AA and glyc-
erol by monoacylglycerol lipase (MAGL),
o,B-hydrolase-6 (ABHD-6), and ABHD-12.
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ENDOCANNABINOIDS IN THE GASTROINTESTINAL TRACT

Classical and nonclassical receptor binding of
endocannabinoids. Endocannabinoids exert cannabimimetic
actions via two G protein-coupled receptors (GPCRs), canna-
binoid receptors 1 and 2 (CB, and CB») (30, 80, 90) (Fig. 2).
These receptors are expressed in both central and peripheral
organs. CB, receptors are mainly localized in the brain and
central nervous system but are also present in peripheral
organs, including peripheral nerves, such as enteric, sympa-
thetic, and sensory nerves, and nonneuronal cells, such as liver,
pancreas, and gastrointestinal epithelial cells (54, 61). CB,
receptors are mainly located in peripheral organs, especially in
spleen, and in immune cells (57, 95). However, CB; receptors
have also been reported in brain, heart, gastrointestinal tract,
vascular smooth muscle, and endothelial cells (89, 95, 103,
104).

AEA binds to central CB, receptors and, to a lesser extent,
to peripheral CB> receptors (71, 100). 2-AG binds to CB; and
CB, receptors with similar binding affinities and acts as a
partial agonist of both receptors (127). Noladin ether binds to
CB, receptors but only weakly to CB> receptors (42, 99).
NADA preferentially binds to CB,; receptors and is a more
potent CB, agonist than AEA (11, 105). Virodhamine is a full
agonist of CB, receptor and a partial agonist with in vivo
antagonist activity at CB; receptor, although it is less potent
than AEA at both receptors (102).

Endocannabinoids may have alternative targets other than
classical CB; and CB, receptors. Transient receptor potential
vanilloid type 1 (TRPV1) receptor is the best studied and is
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Fig. 2. Classical and nonclassical receptor binding of endocannabinoids. AEA, N-arachidonoylethanolamine: 2-AG, 2-arachidonoylglycerol; CB,, cannabinoid
receplor 1; CBz, cannabinoid receptor 2; GPRS3, G protein-coupled receptor 55; NADA, N-arachidonoyl dopamine; noladin ether, 2-arachidonyl glyceryl ether:
PPARaq, peroxisome proliferator-activated receptor a; PPARB/S, peroxisome proliferator-activated receptor B or &; PPARy, peroxisome proliferator-activated
receplor y; TRPVI, transient receptor potential vanilloid type 1; virodhamine, O-arachidonoyl-ethanolamine.

mainly expressed by primary afferent neurons (32, 107).
TRPV1 was originally identified as the receptor of capsaicin,
the active ingredient of chili peppers (19). NADA was the first
endogenous agonist of TRPVI identified in mammals and
activates TRPV1 as effectively as capsaicin (55). AEA acts as
a full agonist for TRPV, but it also indirectly affects TRPV1
activity by activating CB, receptor (112, 119). Other deorpha-
nized GPCRs, such as GPR3, GPR6, GPR12, GPR18, GPR23,
GPR40, GPR41, GPR43, GPR55, GPR84, GPRI119, and
GPR120, have also been suggested to be activated by canna-
binoid receptor ligands (100), but, with the exception of
GPRS55, it has not been determined whether other GPCRs are
directly targeted by cannabinoid receptor ligands. GPRS55 is an
orphan receptor that shows low sequence similarity with CB,
and CB; receptors, but little sequence similarity with the ligand
binding sites of either receptor (81, 100). The noncannabinoid
lysophosphatidylinositol (LPI) has been reported to be an
endogenous ligand of GPR55 (94). AEA and virodhamine
were shown to be active at GPRS55 by a [*>S]GTPyS binding
assay, but result variabilities prevent classifying GPRS5 as an
endocannabinoid receptor (100, 111). AEA and virodhamine
are also known to modulate GPR55 activity induced by LPI or
other agonists (116). In addition, a number of cannabinoid
receptor agonists have been shown to be peroxisome prolifera-
tor-activated receptor (PPAR) agonists in vitro (100). AEA,
noladin ether, and virodhamine bind to PPAR«, 2-AG binds to
PPARPB/S, and AEA, 2-AG, and noladin ether bind to PPAR~y

in a reporter gene assay and a competition assay using fluo-
rescent ligands (14, 46, 47, 106, 128). Further studies are
warranted to conclusively establish relationships between these
alternative targets and endocannabinoids.

The Endocannabinoid System and Intestinal Diseases

Increasing evidence shows that the levels of endocannabi-
noids and/or CB receptors are altered in the biopsy samples of
patients with intestinal diseases, such as diverticulitis, celiac
disease, irritable bowel syndrome (IBS), inflammatory bowel
disease (IBD), and colon cancer, which suggests important
roles of the endocannabinoid system in intestinal pathophysi-
ology (4, 60, 63, 114) (Fig. 3).

Diverticulitis. Colonic diverticular disease (diverticulosis) is
a common disorder with an undefined multifaceted pathogen-
esis. This disease is associated with aging and affects 65% or
more of the population aged over 65 years in Western world
due to reduced tensile strength of the colon wall (7, 136). In
addition, dietary factors, such as low fiber intake, anatomic
features of the colon, and even possible genetic effects play
roles in the development of diverticulosis (7). Alterations of
colonic motility have also been suggested to play a major
etiological role and endocannabinoids are important modula-
tors of neural contractile response in the colon (7, 50). Guag-
nini et al. (50) reported that tissue levels of AEA in divertic-
ulitis (inflammation of diverticulum) were at least twice the
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Fig. 3. Expression levels of the endocannabinoid system in intestinal diseases. AEA, N-arachidonoylethanolamine; 2-AG, 2-arachidonoylglycerol; CBi,
cannabinoid receptor 1; CB2, cannabinoid receptor 2; CD, Crohn’s disease; CRC, colorectal cancer; DAGL, diacylglycerol lipases: FAAH, fatty acid amide
hydrolase: IBD, inflammatory bowel disease; IBS-C, IBS with colitis; IBS-D, IBS with diarrhea; MAGL, monoacylglycerol lipase; NAPE-PLD, N-
acylphosphatidylethanolamine-phospholipase D: P, protein; R, mRNA; TRPV1, transient receptor potential vanilloid type 1: UC, ulcerative colitis.

control level, whereas 2-AG levels were slightly lower. The
mRNA and protein expression levels of CB; receptor were
similar in diverticular and control colons. Functional studies
showed that the nonselective CB agonist WIN 55,212-2 was
profoundly more potent at inhibiting contractions in controls
than in diverticulitis strips and that the selective CB antagonist
SR141716 markedly increased twitch contraction in diverticu-
lar colons but had no effect in controls (50). These observa-
tions suggest that neural control of colonic motility is altered in
diverticulitis and that the endocannabinoid system might con-
tribute to these changes.

Celiac disease. Celiac disease is an inflammatory disease of
the small bowel caused by a permanent intolerance to glutens
in wheat and other cereal crops (66). Celiac disease is charac-
terized by villous atrophy of small intestinal mucosa due to
inflammatory injury and manifests symptoms of diarrhea,
weight loss, weakness, and malabsorption (73). Celiac disease
is associated with HLA class II molecules and almost all
patients express HLA-DQ2 and/or HLA-DQS8, which suggests
a strong genetic predisposition (121). These HLA-DQ mole-
cules on antigen presenting cells bind to and then present
modified gluten peptides to immunocompetent T cells in the
small intestine, which initiates the disease (66, 73).

Accumulating evidence suggests that the endocannabinoid
system contributes to celiac disease. In the jejunum of meth-
otrexate (MTX)-treated rats, levels of AEA and 2-AG were
increased in the active disease state and returned to basal levels
at remission (25). This murine model is used to recapitulate
celiac disease because MTX treatment has been shown to

induce an enteropathy that resembles celiac mucosal lesions
biochemically and histologically (26). Furthermore, AEA lev-
els were reported to be elevated in the duodenal mucosa of the
intestinal biopsy samples of patients with active celiac disease
than in nonceliac individuals and to return to normal after
remission on a gluten-free diet (25). Another study reported
that the mRNA and protein levels of NAPE-PLD (the enzyme
responsible for the synthesis of AEA) were higher in the
duodenal mucosa of untreated celiac patients than in celiac
patients on a gluten-free diet or normal controls, but that the
expression levels of FAAH (the enzyme responsible for
the degradation of AEA) were not significantly different in
these three study groups (9). Interestingly, CB, receptor levels
were markedly higher in the biopsy samples from patients with
active celiac disease than in those of healthy controls or
patients in remission. In particular, CB, receptors were de-
tected in the subepithelial region of the duodenum, where
gluten-reactive proinflammatory Thl cells are located (25).
Battista et al. (8) also reported that CB, and CB, mRNA and
protein expression levels were upregulated in active disease
and reverted to normal levels after treatment. In addition, small
bowel biopsies from children with celiac disease revealed
elevated levels of CB; receptor (108). In the same study, it was
suggested that endocannabinoids were involved in non-HLA
genetic susceptibility of celiac disease based on the finding that
the CB> Q63R variant [a common missense variant
(rs35761398) of CNR2, which encodes CB»] increased the risk
of celiac disease (108). Collectively, studies show that the
levels of endocannabinoids and their receptors are increased in
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active celiac disease but return to normal levels during remis-
sion, which strongly suggests that the endocannabinoid system
plays a role in the development of celiac disease and that its
targeting has therapeutic potential.

Irritable bowel syndrome. IBS is a common functional
bowel disorder and about 10-20% of adults and adolescents
suffer from its symptoms, which include abdominal pain or
discomfort and impaired defecation (70). IBS subtypes can be
classified based on predominant stool patterns as IBS with
constipation (IBS-C), IBS with diarrhea (IBS-D), and mixed
IBS (IBS-M) (36, 70). The etiology of IBS has not been
established but recent reports suggest the involvement of the
endocannabinoid system in its pathophysiology. For example,
the nonselective cannabinoid agonist dronabinol reduced fast-
ing colonic motility in patients with IBS-D or IBS-M (137). In
addition, FAAH mRNA levels in colonic biopsies of IBS-C
patients were significantly lower than in healthy controls
whereas there was no difference in the FAAH mRNA expres-
sion between IBS-D patients and healthy controls. Further-
more, 2-AG levels were higher but levels of OEA and PEA
were lower in IBS-D patients than in healthy controls. On the
other hand, OEA levels were higher in IBS-C patients than in
healthy controls, and AEA levels were similar in IBS-C and
IBS-D patients and controls (44). These findings suggest that
slower turnover of endocannabinoids due to decreased FAAH
levels in IBS-C patients may partially contribute to slowing of
intestinal motility, a typical feature of IBS-C. Furthermore,
cannabinoids have been reported to ameliorate visceral pain
and hypersensitivity, and numbers of TRPV1-immunoreactive
nerve fibers were found to be greater in colonic biopsies from
IBS patients, which suggests that this increase contributes to
visceral hypersensitivity and pain in IBS (1).

Interestingly, genetic polymorphisms of CB; and FAAH
genes have been associated with the symptoms of IBS. The
CB, gene (CNRI) contains polymorphic triplet AAT repeats,
and a higher number of AAT triplets may induce conforma-
tional changes in DNA and thereby alter gene transcription and
reduce gene expression (53, 115). In one study conducted in a
Korean cohort, the allele frequency of AAT triplet repeats in
the CNRI gene was higher (10 or more) in IBS patients than in
normal controls, and symptom scores for abdominal discom-
fort or pain were found to be higher in patients with more
triplet repeats (96). Another genetic variant of CNR/ rs806378
(CC vs. CT/TT) shows a functional polymorphism, because the
T allele of CNRI rs806378 was found to be associated with
altered nuclear protein binding in an electrophoretic mobility
shift assay (131). Furthermore, CNR/I rs806378 (CC vs. CT/
TT) showed a significant association with colonic transit in
IBS-D, and in IBS patients with the CNR/ rs806378 CT/TT
genotype the nonselective cannabinoid agonist dronabinol de-
layed colonic transit (16, 138). Genetic variation of the FAAH
gene is also related with IBS. A single nucleotide polymor-
phism in the human FAAH gene (385C to A), which converts
a proline residue to threonine (P129T), decreases FAAH pro-
tein expression (21). In the biopsy samples from functional
gastrointestinal disorder patients, the odds of D-IBS and M-
IBS were higher for the FAAH polymorphic (CA/AA) geno-
type than for the FAAH (CC) genotype (15). Furthermore, the
CA/AA genotype was observed to be significantly associated
with faster colonic transit than the FAAH CC genotype in
IBS-D patients (15). The cannabinoid agonist dronabinol also
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reduced fasting proximal motility indexes in IBS-D patients
with the FAAH CA/AA variant (137). These clinical studies
indicate that polymorphic genotypes of CB; and FAAH are
highly associated with IBS and suggest their use as biomarkers
to assess disease activity.

Emerging evidence indicates that endocannabinoids inhibit
intestinal motility by activating CB, receptors. Activation of
the endocannabinoid system reduced intestinal motility in
mice, and this effect was enhanced in mice with croton oil-
induced inflammation (62). For instance, the antitransit effect
of cannabinoids was suppressed by the selective CB, receptor
antagonist SR141716A, but not by the CB- receptor antagonist
SR144528, suggesting the involvement of CB, receptor in the
regulation of intestinal motility (62). In another study, phar-
macological inhibitors of FAAH blocked intestinal motility
and this effect was blunted in FAAH-deficient mice. Inhibition
of FAAH increased AEA, 2-AG, and PEA levels and yet the
effect of FAAH inhibitors was reduced by the CB, receptor
antagonist rimonabant and by CB, deficiency, suggesting the
involvement of CB, receptor in intestinal motility (18). In the
same study, the authors found that decreased motility in
FAAH-deficient mice did not achieve statistical significance as
opposed to acute pharmacological inhibition. This suggests
that congenital FAAH inactivation involves endogenous com-
pensatory mechanisms that include a failure to increase the
levels of 2-AG and PEA (both of which are inhibitors of
gastrointestinal motility) (18).

Cannabinoids also have a potent antipropulsive effect. Gen-
erally, this effect is related to inhibition of the release of
acetylcholine from excitatory motor neurons, which partially
mediate the ascending contraction phase of the peristaltic
reflex, by CB, receptors (98). AEA decreased ascending con-
tractions and concomitant substance P release and reduced
descending relaxation and concomitant vasoactive intestinal
peptide release via CB, receptors (49). Furthermore, the CB,
receptor antagonist AM251 but neither the CB> receptor an-
tagonist AM630 nor the TRPV1 receptor antagonist resinifera-
toxin increased those responses (49). Moreover, AEA or 2-AG
suppressed colonic cholinergic contractility in strips of human
colonic longitudinal muscle and circular muscle in vitro (120).
In addition, electrically evoked contractile responses in human
ileum longitudinal smooth muscle were decreased by the CB,
receptor antagonist SR141716, but not by the CB, receptor
antagonist SR144528 (24). In contrast, CB, receptors had no
significant effects on gut motility under normal conditions but
were found to regulate motility under pathological conditions
(126). In one study, the CB, receptor agonist ACEA inhibited
basal gastrointestinal transit in rats, while the CB> agonist
JWH-133 decreased lipopolysaccharide (LPS)-mediated in-
creases in gastrointestinal transit (79). In addition, activation of
CB, receptors by JWH-133 in the enteric nervous system
decreased LPS-enhanced intestinal contractility (37). Thus it
appears cannabinoids are potent inhibitors of propulsive mo-
tility and this effect is probably mediated by the action of CB,
receplors.

CB, antagonists have been suggested as treatments for
constipation. The CB; receptor inverse agonist taranabant
reversed experimental constipation, suggesting that CB, recep-
tor be considered a potential target in IBS-C (43). In biopsy
samples of patients with slow-transit constipation, the expres-
sion level and activity of enteric FAAH were decreased but
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AEA and 2-AG levels were increased vs. normal controls
(140). In a recent study it was reported that the DAGL
inhibitors reversed pharmacologically slowed gastrointestinal
motility and intestinal contractility and normalized fecal output
in constipated C3H/Hel mice via 2-AG and CB, receptor-
dependent mechanisms (6). These findings indicate that the
inhibition of endocannabinoid biosynthesis offers potential
novel way of treating constipation.

Inflammatory bowel disease. IBD including Crohn’s disease
(CD) and ulcerative colitis (UC) is chronically relapsing-
remitting or progressive inflammatory conditions of the gas-
trointestinal tract with complex etiologies that involve genetic,
environmental, microbial, immune, and nonimmune factors
(29). A recent systemic review reported that the worldwide
incidence and prevalence of IBD are increasing (86). The main
symptoms of IBD include abdominal pain, diarrhea, rectal
bleeding, and weight loss (134). Anti-inflammatory drugs, such
as sulfasalazine, mesalazine, and glucocorticosteroids, and
more recently immunomodulators have been widely used for
IBD treatment.

Cannabinoids have been used to treat inflammatory condi-
tions in the gut. In a retrospective observation study, 30 CD
patients stated that the use of cannabis ameliorated disease
activity and reduced the need for other conventional medicines,
such as steroids (92). According to another cohort study of 100
UC and 191 CD patients, 33% of UC and 50% of CD patients
were lifetime users of cannabis to relieve IBD-related symp-
toms including abdominal pain and diarrhea (67). In a prospec-
tive placebo-controlled study of 21 CD patients, a short course
(8 wk) of cannabis provided significant clinical benefits, such
as a steroid-free status and improved appetite and sleep in 90%
of patients with active CD (91). These experiences and obser-
vations suggest that cannabis be a potential candidate for the
development of an anti-IBD therapy and that the endocannabi-
noid system can be used beneficially in IBD (93).

The levels of endocannabinoids and/or their receptors are
altered in IBD. Clinically, AEA levels were highly elevated
(>2-fold) in mucosal biopsies of active UC patients vs. normal
control biopsies (27). In another study, AEA levels were
significantly lower in inflamed than in uninflamed IBD mu-
cosa. In parallel, the activity of the AEA-synthesizing enzyme
NAPE-PLD was lower and that of the AEA-degrading enzyme
FAAH was higher in inflamed than in uninflamed mucosa (35).
In the same study, the expression of CB, receptor was signif-
icantly elevated in the inflamed mucosa of CD and UC pa-
tients, while the expression of CB> receptor was similar in
inflamed and uninflamed tissues. Quantification of mucosal
immunoreactivity revealed that CB» receptor expression (but
not CB, receptor expression) and the expressions of DAGL«
and MAGL were elevated in mild and moderate UC patients
but that NAPE-PLD expression was decreased in moderate and
severe UC patients, suggesting dysregulation of AEA and
2-AG (74). An immunohistochemical study indicated that CB,
and CB, receptors are present in human colonic epithelium,
smooth muscle, and submucosal myenteric plexus (139). In
lamina propria, CB, and CB, receptors are expressed in plasma
cells, whereas only CB:> receptors are expressed in macro-
phages. One study showed that CB- receptors are especially
increased in the colonic tissues of IBD patients, while another
showed that CB; mRNA expression (but not CB> mRNA
expression) was upregulated in the colonic tissues of CD
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patients (122, 139). Intriguingly, a genetic polymorphism of
the CB, receptor gene CNR/ 1359 G/A was reported to
influence susceptibility to UC and CD phenotype (123). How-
ever, data derived from human subjects are not enough to draw
a conclusion about the role of the endocannabinoid system in
IBD. When CB, receptor is elevated, CB, receptor is elevated
or unchanged, and vice versa.

Studies using experimental animal models of IBD have also
shown that the endocannabinoid system plays an essential role
in colitis. In the colons of 2.4-dinitrobenzene sulfonic acid
(DNBS)-treated mice and in colonic submucosa of trinitroben-
zene-sulfonic acid (TNBS)-treated rats, AEA levels (but not
2-AG levels) were strongly elevated vs. untreated controls
(27). Another study also showed that AEA levels were elevated
in the colons of TNBS and dextran sodium sulfate (DSS)-
treated mice vs. controls (2). In addition, MAGL inhibitor-
induced increases in endogenous 2-AG levels significantly
decreased colonic damage and proinflammatory cytokine pro-
duction in TNBS-induced colitis (3). Moreover, the adminis-
tration of the NAAA chemical inhibitor AM9053 reduced
TNBS-induced colitis by reducing leukocyte infiltration and
activation and decreasing the expressions of proinflammatory
cytokines, which may have been caused by increased AEA
levels, because the hydrolysis of AEA is blocked by AM9053
(2). As a result, the levels of endocannabinoids were often
increased in inflamed intestine, and boosting endocannabinoid
levels by administering biochemical inhibitors reduced this
inflammation.

The tissue levels of cannabinoid receptors are also altered in
the presence of intestinal inflammation. CB, expression was
increased in myenteric neurons of colons from DNBS-treated
mice, and genetic and pharmacological blockade of CB, in-
creased the severity of DNBS- and DSS-induced colitis, and
consistent treatment with a CB, agonist and genetic ablation of
FAAH protected against DNBS-induced colitis (77). Inhibitor
of endocannabinoid membrane transporter, FAAH inhibitor, or
a combination of both inhibitors ameliorated TNBS-induced
colitis in mice, and these effects were diminished in CB; or
CB; receptor knockout mice (124). However, another study
reported that FAAH inhibition with two potent and selective
inhibitors (PF-3845 and URB597) did not improve colon
inflammation in a TNBS-induced colitis model (2). In mustard
oil- and DSS-induced colitis, CB, and CB, agonists both
inhibited colitis by improving colon length, ameliorating dis-
ease symptoms, and reducing histological inflammatory scores
(65). In TNBS-induced colitis, CB> mRNA expression was
significantly increased in colons, and activation of CB- recep-
tor by selective agonists (JWH-133 and AM1241) reduced
colitis, whereas treatment with the CB, receptor antagonist
AMG630 exacerbated colitis (125). In another study, CB, recep-
tors limited and reduced DNBS-induced inflammation in the
enteric nervous system and in the smooth muscle, indicating
that a genetic deficiency of CB, would abolish this protective
effect and cause membrane potential instability and prolonged
inhibitory junction potentials in circular smooth muscle (117).
A study using mice lacking CB; and/or CB, receptor showed
that genetic deletion of either receptors aggravated TNBS
colitis, but the absence of both receptors did not exacerbate
colitis severity compared with the absence of each receptor
(38). In mice, the centrally active CB/CB> receptor agonist
WIN 55,212-2 blocked DSS- and TNBS-induced colitis,
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whereas SAB378, a peripherally restricted CB,/CB> receptor
agonist, had no effect on colitis, suggesting that peripheral CB
receptor stimulation alone is not sufficient to exert an anti-
inflammatory effect (23). However, there remains a possibility
that the doses of SAB378 used in this study were not sufficient
to induce an anti-inflammatory effect, as the doses used were
lower than those of other cannabinoid agonists used in colitis
models or the doses of WIN 55,212-2 used in the same study,
as mentioned by Alhouayek and Muccioli (4). Spontaneous
colitis in IL-10"/~ mice was reduced by the CB- receptor
agonist JWH-133 and this was attributed to the inactivation of
inflammatory cells (118). Overall, data from animal studies
suggest that the expression levels and/or activities of cannabi-
noid receptors are closely related to intestinal inflammation.
However, available information does not fully explain the role
of endocannabinoids in IBD.

Activation of CB, or CB, receptors by their agonists (WIN
55.212-2 and JWH-015, respectively) reduced colitis-induced
hypersensitivity to colorectal distension in rats, whereas only
the CB, receptor antagonist rimonabant increased inflamma-
tory hyperalgesia, suggesting that only CB, receptor is in-
volved in colitis-induced abdominal response to colorectal
distension (colitis-induced hyperalgesia) (113).

A selective TRPV1 receptor antagonist decreased micro-
scopic colitis induced by TNBS and subsequent visceral hy-
peralgesia, thus indicating that TRPV1 receptor plays an im-
portant role in the generation of inflammation and hypersensi-
tivity (85). Furthermore, numbers of TRPVI expressing
sensory nerve fibers were reported to be increased in patients
with rectal hypersensitivity and fecal urgency, which could be
a feature of IBD (20). In addition, TRPV1-deficient mice
showed increased susceptibility to DNBS-induced colitis; this
endogenous protective effect of TRPV1 receptors was attrib-
uted to the modulation of colonic electrophysiological proper-
ties (78, 117).

Colorectal cancer. Colorectal cancer (CRC) is the third most
common malignancy and the fourth most common cause of
cancer-related death, and in Asia and Africa its incidence is
gradually increasing presumably due to the adoption of West-
ern lifestyles (129). About 20-30% of all CRC cases have a
familial basis, but the majority have been associated with
environmental factors (110, 130). Chronic intestinal inflamma-
tion, such as that observed in IBD, also increases the risk of
CRC, and such cases are referred to as colitis-associated
colorectal cancer (130). Recent studies have elucidated impor-
tant interactions between the endocannabinoid system and
cancer, and abnormal regulation of the endocannabinoid sys-
tem is known to contribute to cancer progression in several
different types of cancer (52). As a result, pharmacological
targeting of the endocannabinoid system is emerging as a
promising new cancer therapy (10).

Abnormal expression patterns of cannabinoid receptors in
CRC have been reported by several studies. In particular, the
mRNA and protein levels of CB, receptors were found to be
greatly reduced in human CRC tissues compared with adjacent
normal mucosae and in 9 of 10 human cancer cell lines, and
this effect was attributed to aberrant methylation of CpG
islands within CB; promoter (135). In contrast, the mRNA
expression levels of CB» receptors were not different in CRC
and normal tissues (135). In another study, CB receptor levels
were found to be downregulated in tumor tissues vs. paired
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normal mucosae, whereas CB, receptor levels were upregu-
lated in tumor specimens vs. paired normal mucosa (22).
According to a recent study, which was conducted on tissue
samples of 175 CRC patients, CB, receptor expression was
increased in tumor tissues of CRC patients compared with their
normal counterparts, and tumors with higher CB, receptor
levels also exhibited higher proliferation levels, suggesting
CB, receptor expression might be a marker of poor prognosis
(76). In animal studies, genetic or pharmacological (AM251)
deletion of CB, receptor enhanced intestinal tumor growth in
Apc™™* mice, in which multiple intestinal polyps develop
spontaneously as in humans due to a germ-line mutation in the
APC gene, but activation of CB, receptor by its agonist (R-1
methanandamide) attenuated tumor growth (135). In a mouse
xenograft model, the CB, receptor agonist CB13 reduced
human colon cancer cell growth (22). In an azoxymethane
(AOM)-induced tumor model, CB, and CB, receptor mRNA
expressions were unchanged but TRPV1 receptor mRNA ex-
pression was significantly decreased in AOM-treated mouse
colons vs. control colons (58). Moreover, FAAH inhibitor and
the cannabinoid receptor agonist HU210 significantly reduced
AOM-mediated aberrant crypt foci (ACF) formation, and ACF
numbers were not different in CB, receptor-deficient and
wild-type mice (58). Although altered expression levels of
cannabinoid receptors have been observed in several studies,
the relationship between cannabinoid receptors and CRC is
obviously more complex than straightforward cause-and-ef-
fect.

The levels of endocannabinoids were also altered in CRC. In
AOM-treated mouse colons, the levels of 2-AG were signifi-
cantly increased but the levels of AEA were unaltered. In
addition, FAAH inhibitor increased 2-AG and AEA levels
significantly (58). In another study, AEA and 2-AG levels were
three- and twofold higher in human tissues of transformed
adenomatous polyps and CRC, respectively, compared with
normal mucosae (68). Collectively, these results suggest that
endocannabinoids might act as endogenous inhibitors of cancer
growth.

The endocannabinoid system modulates tumor progression
by regulating apoptosis. Treatment of mouse with AOM sup-
pressed the activations of caspase-3 and caspase-9 and thus
inhibited apoptosis and promoted tumor growth, and cotreat-
ment of the FAAH inhibitor N-arachidonoylserotonin reversed
this effect of AOM on caspase-3 inactivation and reduced
aberrant crypt foci formation (58). In colon cancer cells, the
activations of CB; and CB: receptors caused apoptosis via
TNF-a-mediated de novo synthesis of ceramide; in this back-
ground, the CB; receptor agonist R-1 methanandamide pro-
moted apoptosis by downregulating the antiapoptotic protein
survivin via the cyclic AMP-dependent protein kinase A sig-
naling pathway (22, 135). Interestingly, AEA inhibited the
growth of COX-2-expressing CRC cells by inducing cell death,
and this effect was enhanced by inhibiting FAAH but partially
prevented by inhibiting COX-2 activity, indicating that AEA
might be therapeutically useful against CRC, which overex-
presses COX-2 and develops resistance to apoptosis (97). The
proliferation and migration of cancer cells can be modulated by
the endocannabinoid system. AEA, 2-AG, and the CB receptor
agonist HU-210 inhibited the proliferation of human colon
cancer Caco-2 cells expressing only CB; receptor, and these
inhibitions were blocked by the CB, receptor antagonist
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SR141716A but not by the CB; receptor antagonist SR144528
(68). Moreover, the activations of both CB receptors inhibited
the proliferation of DLD-1 cells expressing CB; and CB»
receptors (68). In another study, the upregulation of CB»
receptor in CRC tissues was found to be related to higher
proliferation levels in tumors (76). Furthermore, the activation
of CB, receptor caused SNAIL/ overexpression and a direct
correlation was observed between CB, receptor and SNAIL/
expression in human tumors, indicating a positive correlation
between CB, receptor expression and SNAILI expression, the
latter of which is related to the epithelial mesenchymal transi-
tion process, the first step in cancer metastasis (76). It was also
reported that CB, receptor activation by AEA inhibited the
norepinephrine-induced migration of human colon cancer
SW480 cells (64). Thus it seems that endocannabinoids and
their receptors modulate tumor progression by regulating cell
death and/or proliferation.

Cannabidiol has been shown to have analgesic, anti-inflam-
matory, antioxidant, and neuroprotective effects (59). This
nonpsychotropic cannabinoid has very low binding affinity for
CB, and CB, receptors and may inhibit FAAH (28, 59).
Cannabidiol has also been suggested to have potential thera-
peutic effects in the context of colon carcinogenesis (58).
Similar to the effect of endocannabinoids on CRC, cannabidiol
reduced numbers of AOM-induced ACF, polyps, and tumors in
a mouse colon cancer model and suppressed AOM-induced
Akt phosphorylation and caspase-3 inactivation in colonic
tissues. In Caco-2 cells, cannabidiol reduced H-O--mediated
DNA damage, increased 2-AG levels, and exerted an antipro-
liferative effect in a CB,- and TRPV 1-dependent manner (5).
In human CRC cells, the major active component of marijuana
A°-THC induced apoptosis dose dependently by activating
caspase-3 and increasing cleavage of its substrate, poly ADP-
ribose polymerase (PARP) (48). Notably, THC-induced apo-
ptosis was blocked by the CB, receptor antagonist AM251, but
not by the CB, receptor antagonist AM630 (48). In addition,
activation of CB, receptor by THC effectively inhibited two
major cell survival signaling pathways, the RAS-MAPK/ERK
and PI3K/AKT pathways, and this inhibition was accompanied
by activation of the proapoptotic Bcl-2 family member BAD
(48). In Caco-2 cells, cannabigerol decreased cancer cell via-
bility and increased ROS production in time- and concentra-
tion-dependent manner, and these effects were not affected by
the activations of TRP channels (TRPA1, TRPVI1, or TRPV2)
but were enhanced by the CB, receptor antagonist AM630
(13). Furthermore, cannabigerol inhibited the growth of xeno-
graft tumors (HCT116) and AOMe-induced carcinogenesis
(13). By and large, studies about therapeutic effects of canna-
binoids may provide an insight into the possible application of
endocannabinoids to anticancer therapy.

The Endocannabinoid System and the Gut Microbiota

Gut microorganisms play critical roles in energy balance by
contributing to host metabolism. Emerging evidence suggests
that the gut microbiota modulate the endocannabinoid system
to regulate energy metabolism and gastrointestinal function
(17). The first study to link the endocannabinoid system and
gut bacteria was performed by Rousseaux et al. (109), who
showed that CB; receptor expression was increased by treating
intestinal epithelial cells with a Lactobacillus acidophilus
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strain, and that oral administration of this strain reduced
abdominal pain in rats. Several studies have also shown that
LPS (a component of the cell walls of gram-negative bacteria)
influences the levels of endocannabinoids. For example, LPS
induced AEA synthesis in macrophages, downregulated FAAH
expression, and increased AEA production in peripheral lym-
phocytes (69, 72). Gut bacteria also modulate the expression of
the intestinal endocannabinoid system, which in turn regulates
adipogenesis (88). Administration of Akkermansia muciniphila
(a mucin-degrading bacterium that resides in the intestinal
mucus layer) to high-fat diet-fed mice increased the levels of
2-AG, 2-0G, and 2-PG in intestine and reversed high-fat
diet-induced metabolic disorders (39). Furthermore, modula-
tion of the innate immune system has been linked to the gut
microbiota and the endocannabinoid system. For example,
deletion of MyD&8 (an adaptor molecule of Toll-like receptors)
in the intestinal epithelium altered the composition of gut
microorganisms and increased the levels of 2-AG and 2-OG
but decreased AEA levels (40). Although the gut microbiota
and the endocannabinoid system have been shown to be linked
in various human diseases, the molecular basis of this link has
not been established, and no direct link has been conclusively
demonstrated in humans.

Conclusion

Convincing evidence suggests that the endocannabinoid sys-
tem is expressed in the gut and maintains intestinal homeosta-
sis by modulating many important functions including the
immune system, motility, sensation, and secretion. Dysregula-
tion of the endocannabinoid system may contribute to the
developments of several intestinal disorders, such as divertic-
ulitis, celiac disease, IBS, IBD, and CRC. Accordingly, many
components of the endocannabinoid system have been sug-
gested to be pharmacological targets. However, the expression
levels of the endocannabinoid system in a variety of diseases
are somewhat variable and often ambiguous, and the extended
list of endocannabinoid-related mediators makes things more
complex. Therefore, further studies are required to define how
the endocannabinoid system regulates intestinal functions in
health and disease and to provide options for the therapeutic
exploitation of the endocannabinoid system to counteract dis-
ease progression in the gut.
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